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Self-organized growth model for the quenched Herring-Mullin equation
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We introduce a simple self-organized growth model mimicking the dynamics of a driven tensionless inter-
face in a random medium near the depinning threshold. The roughness and growth exponents for the model are
obtained asz.1.93 andb.0.96, respectively. We discuss the possible continuum equation describing the
motion of a driven interface in our model.

PACS number~s!: 05.40.2a, 68.35.Fx, 47.55.Mh
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Recently there have been many studies about the prob
of a driven interface in a random medium because it is
lated to many physical phenomena such as fluid invasio
porous media@1,2#, depinning of charge density waves@3#,
fluid imbibition in paper@4#, driven flux motion in a type-II
superconductor@5,6#, etc. The motion of a driven interface i
a random medium~DIRM! is determined by interplay be
tween the external driving force and the quenched disorde
a random medium. The velocity of a driven interface is ze
when the driving forceF is smaller than the pinning strengt
induced by the quenched disorder. There exists a thres
of the driving forceFc above which the interface moves wit
a constant velocity. Accordingly, the velocity is zero forF
,Fc , and it increases forF.Fc . This phenomenon is
called the pinning-depinning transition.

The dynamics of the DIRM can be explained by t
Langevin-type continuum equation. The simplest we
known Langevin-type continuum equation describing
motion of the DIRM is the quenched Edwards-Wilkinso
~QEW! equation@7#,

]h~x,t !

]t
5n¹2h~x,t !1F1h~x,h!, ~1!

whereh(x,t) means the height of the interface at positionx
and timet. n¹2h(x,t) describes the smoothening effect
interface tension.F is an external driving force, andh(x,h)
is a quenched noise with ^h(x,h)&50 and
^h(x,h)h(x8,h8)&52Dd(x2x8)D(h2h8). D(z) is a
monotonically decreasing function ofz for z.0 and decays
exponentially to zero over a finite distancea. The quenched
noise term describes a random force by quenched diso
An interesting feature of the growing interface is nontriv
scaling behavior in the global interface width. The glob
interface width, defined by W(L,t)5^L2d( i@hi(t)
2h̄(t)#2&1/2, scales as

W~L,t !;H tz/z if t!Lz

Lz if t@Lz.
~2!

Here h̄, L, d, andhi(t) denote the mean height, the syste
size, the substrate dimension, and the height at timet and site
i, respectively.z, z, andb(5z/z) are called the roughness
the dynamic, and the growth exponent, respectively.
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Many analytical and numerical studies have been car
out to describe and understand the driven motion of an in
face in a random medium@8–14#. In spite of many of these
efforts, only several stochastic growth models mimicking t
motion of the DIRM have been introduced. The models,
example, are the Sneppen model@15#, the directed percola-
tion depinning model@4#, the random field Ising model@16#,
etc. Recently we introduced the model that mimics the
namics of the DIRM with interface tension near the thresh
@17#. The scaling properties of our model are in good agr
ment with those expected from the analytical and numer
studies of the QEW equation. In this paper, we introduc
simple stochastic growth model for the dynamics of t
DIRM with negligible interface tension near the thresho
So far, there has not been any study about dynamics of
DIRM with negligible interface tension through the stocha
tic growth model. Hence it would be very interesting to i
troduce a simple stochastic growth model for the DIRM w
negligible interface tension and discuss a possible continu
equation describing the motion of a driven interface in t
model.

Many stochastic models for dynamics of the fluctuati
interfaces in homogeneous media~FIHM! were introduced
@7#. All the stochastic growth in the models occur through
interplay between the following two effects: the white noi
effect of deposition of a particle at a randomly selected s
on the interface, and the local relaxation effect of the dep
ited particle, which prevents the interface from becomi
rough due to the white noise effect. As an example of
local relaxation, let us consider the Family model@18#. In the
Family model, the deposited particle diffuses randomly
one of the nearest-neighbor sites whose height is lower t
that of the randomly selected site. Diffusion of the deposi
particle generates interface tension in the growing interfa
The scaling properties obtained from the Family model are
good agreement with those expected from the Edwa
Wilkinson ~EW! equation,

]h~x,t !

]t
5n¹2h~x,t !1h~x,t !, ~3!

where h(x,t) is a white noise with ^h(x,t)&50 and
^h(x,t)h(x8,t8)&52Dd(x2x8)d(t2t8). Growth of the in-
terface in the EW equation is determined by the interp
between the interface tension term and the white noise te
It is well known that the scaling exponents obtained from
4606 © 2000 The American Physical Society
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Monte Carlo simulation of the models for the FIHM are
excellent agreement with those expected from the continu
equation describing the motion of the FIHM@7#. In the
DIRM near the depinning threshold, growth of the driv
interface occurs at the site having the lowest pinning stren
among the whole quenched disorder on the interface. Th
fore, when one designs the stochastic growth model for
DIRM near the threshold, the growth rule can be defined
follows: we preassign random numbers that repres
quenched disorder in a random medium to all perimeter s
of the interface. At each time step, we add a particle on
selected site, which has a global minimum random num
on the interface, and then an existing random number on
site is updated. After that, the updated particle can diffus
its nearest-neighbor sites. When we used the diffusion
introduced by Family in the model for the DIRM, we ob
tained the same scaling behavior as that of the QEW eq
tion @17#. Another stochastic growth model for the DIRM
near the threshold, which has the same relaxation rule as
restricted solid-on-solid~RSOS! model for the FIHM
@19,20#, was introduced by Sneppen. The scaling behav
of the Sneppen model are the same as those of the contin
equation describing the dynamics of the interface form
from the RSOS model, which has the quenched noise t
instead of the white noise term@7#,

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,h!. ~4!

This equation is called the quenched Kardar-Parisi-Zh
~QKPZ! equation. In the QKPZ equation, the ter
l/2@¹h(x,t)#2 denotes the lateral growth effect of the grow
ing interface. This fact indicates that any other terms, wh
do not exist in the ontinuum equations describing dynam
of an interface formed from the model for the FIHM, are n
induced from the diffusion of the newly updated particle
the model for the DIRM. It is thus possible to design a s
chastic growth model for the DIRM near the thresho
which has the same dynamic rule except for the noise ef
as the model for the FIHM, if one knows the stochas
growth rule of the model for the FIHM.

We now want to introduce a simple stochastic grow
model for the DIRM with negligible interface tension ne
the threshold. It is necessary to know the stochastic gro
model for the FIHM without interface tension. Several yea
ago, Kim and Sarma@21# introduced a stochastic model, th
larger curvature~LC! model, which mimics the motion of the
FIHM with negligible interface tension@21#. The exponents
obtained from the model are in good agreement with th
expected from the Herring-Mullin~HM! equation@22#,

]h~x,t !

]t
52K¹4h~x,t !1h~x,t !, ~5!

where2K¹4h(x,t) denotes the effect of minimizing of th
local curvature of the interface. In the LC model, interfa
tension and lateral growth effects in a growing interface
not exist. The relaxation rule in the Kim-Sarma model is
follows: the newly added particle can diffuse randomly
one of the nearest-neighbor sites whose curvature is la
than that of the selected site. The curvature at sitei is defined
m
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as hi 1122hi1hi 21. This relaxation tends to minimize th
local curvature of the interface. Hence we can design a
chastic growth model for the DIRM without interface tensio
near the threshold. The growth rule in our model is as f
lows. ~i! We preassign random numbers on the interface.~ii !
We add a particle on the site having a global minimum ra
dom number on the interface, and then we change the
dom number on that site.~iii ! The newly added particle dif-
fuses randomly to one of the nearest neighbor sites wh
curvature is larger than that of the selected site.~iv! We
update the random number at the newly occupied site.
stochastic growth rule of our model is depicted in Fig. 1.
this way, we can generate a movement decreasing curva
near the minimum random number site. This is a charac
istic feature appearing in the model without interface tensi

We have carried out Monte Carlo simulations for syste
sizesL532, 40, 64, 90, 128, 180, 256, 362, and 512. N
merical data are averaged typically over 100 configuratio
In order to obtain the growth exponent for our model, w
measure the time-dependent behavior of the global inter
width W(L,t) starting from the initially flat interface. We
plot W2(L,t) vs time in double logarithmic scale in Fig. 2
The interface width initially grows with the growth expo
nent, 0.5, as random growth. After that, the interface wid
grows with the exponentb.0.96 as shown in Fig. 2. We
also consider another growth exponent by measuring the
bal width starting from the saturated interface instead of
flat interface. The growth exponent is measured asbs
.0.79. The exponentbs is smaller thanb obtained from the
flat interface. In the case of stochastic models for the dyna
ics of the DIRM, the values ofbs are smaller than that ofb
obtained from the flat interface@15,17#. We also plot the
saturated value ofW2(L) vs the system sizeL in double
logarithmic scale to obtain the roughness exponent. The
tained roughness exponent isz.1.93 as shown in Fig. 3. We
have also measured the height-height correlation func
C(x) defined as

C~x!5K 1

Ld8 (
x

@h~x1x1 ,t!2h~x1,t!#2L 1/2

, ~6!

FIG. 1. Schematic representations of the stochastic rule of
model. The arrows indicate the selected sites having he lowest
bal minimum random number. The gray squares denote the ne
added particles on the interface. The bold numbers denote
newly updated random numbers.
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where timet is larger than the saturation time, andC(x)
scales asxzc. The roughness exponent value fromC(x) is
zc.0.98 as shown in the inset of Fig. 3. This value
smaller than the one obtained from the global interfa
width. It is known that this anomalous scaling of the loc
width is due to the super-roughening, in such a way that
roughness exponentzc obtained from the height-height co
relation function is smaller than the one obtained from
saturated value ofW2(L) @12–14#. Super-rough scaling oc
curs when the roughness exponent of the global widthz
.1. Super-rough interfaces do not represent the self-af
scaling nature, since the basic step is a diverging quan
@14#. The height-height correlation function in the supe
rough interfaces might be given asC(x);xzcLz2zc. If the
correlation lengthx is the same as the system sizeL, we
recoverC(x5L)5W(L). The value of obtained exponen
is larger than that from the QEW and the QKPZ equatio
In Figs. ~2! and ~3!, the data do not show any crossov
behavior. Therefore our model belongs to a different univ
sality class from the QEW and the QKPZ universal
classes.

It would be interesting to consider the continuum equat

FIG. 2. Plot ofW2(L,t) vs timet in double logarithmic scale for
the system sizeL5512. The slope of the dotted line is 2b51.92.
Inset: The same plot ofWs

2(L,t) starting from the saturated inter
face. The slope of the line is 2bs51.58.

FIG. 3. Plot ofW2(L,t) vs the system sizeL in double logarith-
mic scales for the system sizesL532, 40, 64, 90, 128, 180, 256
362, and 512. The slope of the line is 2z53.85. Inset: Plot ofC2(x)
vs x in double logarithmic scales for the system sizeL5512. The
line obtained from the least-square fits has the slope 2zc51.96.
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describing the motion of the interface formed from our s
chastic growth model. The general Langevin-type equat
describing growing interface near the threshold can be w
ten as

]h~x,t !

]t
5n¹2h~x,t !2K¹4h~x,t !1

l

2
@¹h~x,t !#2

1h~x,h!1Fc . ~7!

A method to check whether or not there exists a surf
tension effect in our model is to measure the hopping rate
the newly updated particles according to the slope of a til
substrate after saturation@7#. When there exists a surfac
tension effect in the stochastic growth model, the newly u
dated particles tend to move in the downhill direction of t
tilted substrate in the relaxation process after update. I
well known that the diffusion process of a deposited parti
in the LC model is independent on the slope of the tilt
substrate. In our model the random number distribution
the interface is independent on the slope of the tilted s
strate. Hence, the process of selecting the site having a gl
minimum random number is also independent on the slop
the tilted substrate. From the above facts we believe
there is no interface tension effect in our model. Next,
check whether or not there is any lateral growth effect in
dynamics of our model. In the stochastic model with a late
growth effect, the number of particles added on the surf
generally increases as the slope of the tilted substrate
comes larger because of the presence ofl/2@¹h(x,t)#2(l
.0), so that the velocity of the driven interface depends
the slope of the tilted substrate@7#. The velocity of our
model is alwaysv5(1/L)$(x

Lh(x,t11)2(x
Lh(x,t)%51/L

regardless of the slope of the substrate tilt. It is because o
one particle in our model is added on the interface per e
time. The stochastic growth in our model does not inclu
any surface tension and lateral growth effects. Accordin
we propose that the continuum equation corresponding to
dynamics of our model is the quenched Herring-Mul
~QHM! equation@23#,

]h~x,t !

]t
52K¹4h~x,t !1h~x,h!. ~8!

Besides the term2K¹4h in the QHM equation, there is the
possibility of the existence of other terms or higher ord
nonlinear terms in dynamics of our model. It is impossible
check whether those effects exist or not through the sim
tion of the model. However, we think that no effects of tho
other terms exist due to the quenched noise because
could not find any crossover behavior in our model.

In summary, we have introduced a simple self-organiz
stochastic growth model for the driven interface in a rand
medium near the depinning threshold. The obtained rou
ness and growth exponents arez.1.93,b.0.96 in 111 di-
mensions. These are alternate exponents. Our model is
signed to mimic the motion of the driven tensionle
interface in a random medium near the threshold. In
model, we have used the relaxation rule introduced by K
and Sarma@21#. The relaxation rule generates the effect
minimizing of the local curvature of the driven interface. W
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have thus proposed that a suitable continuum equation
dynamics of the model is the QHM equation, by showi
that the interface tension and the lateral growth effects do
exist in the driven interface formed by the model.
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