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Self-organized growth model for the quenched Herring-Mullin equation
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We introduce a simple self-organized growth model mimicking the dynamics of a driven tensionless inter-
face in a random medium near the depinning threshold. The roughness and growth exponents for the model are
obtained ag=1.93 andB=0.96, respectively. We discuss the possible continuum equation describing the
motion of a driven interface in our model.

PACS numbgs): 05.40:-a, 68.35.Fx, 47.55.Mh

Recently there have been many studies about the problem Many analytical and numerical studies have been carried
of a driven interface in a random medium because it is reout to describe and understand the driven motion of an inter-
lated to many physical phenomena such as fluid invasion iface in a random mediuf8—14]. In spite of many of these
porous medid1,2], depinning of charge density wavg3], efforts, only several stochastic growth models mimicking the
fluid imbibition in paperf4], driven flux motion in a type-Il  motion of the DIRM have been introduced. The models, for
superconductdib,6], etc. The motion of a driven interface in example, are the Sneppen mofi&b|, the directed percola-

a random medium(DIRM) is determined by interplay be- tion depinning modef4], the random field Ising mod¢L6],
tween the external driving force and the quenched disorder ietc. Recently we introduced the model that mimics the dy-
a random medium. The velocity of a driven interface is zeronamics of the DIRM with interface tension near the threshold
when the driving forcd= is smaller than the pinning strength [17]. The scaling properties of our model are in good agree-
induced by the quenched disorder. There exists a thresholdent with those expected from the analytical and numerical
of the driving forceF . above which the interface moves with studies of the QEW equation. In this paper, we introduce a
a constant velocity. Accordingly, the velocity is zero for  simple stochastic growth model for the dynamics of the
<F., and it increases folF>F.. This phenomenon is DIRM with negligible interface tension near the threshold.
called the pinning-depinning transition. So far, there has not been any study about dynamics of the

The dynamics of the DIRM can be explained by the DIRM with negligible interface tension through the stochas-
Langevin-type continuum equation. The simplest well-tic growth model. Hence it would be very interesting to in-
known Langevin-type continuum equation describing thetroduce a simple stochastic growth model for the DIRM with
motion of the DIRM is the quenched Edwards-Wilkinson negligible interface tension and discuss a possible continuum

(QEW) equation[7], equation describing the motion of a driven interface in the
model.
ah(x,t) Many stochastic models for dynamics of the fluctuating
n =pV2h(x,t)+F+ 5(x,h), (1) interfaces in homogeneous medRIHM) were introduced

[7]. All the stochastic growth in the models occur through an
interplay between the following two effects: the white noise
whereh(x,t) means the height of the interface at position effect of deposition of a particle at a randomly selected site
and timet. »V2h(x,t) describes the smoothening effect of on the interface, and the local relaxation effect of the depos-
interface tensionk is an external driving force, angl(x,h)  ited particle, which prevents the interface from becoming
is a quenched noise with (7(x,h))=0 and rough due to the white noise effect. As an example of the
(n(x,h)n(x",h"))=2D&(x—x")A(h—h"). A(z) is a local relaxation, let us consider the Family moft8]. In the
monotonically decreasing function affor z>0 and decays Family model, the deposited particle diffuses randomly to
exponentially to zero over a finite distanaeThe quenched one of the nearest-neighbor sites whose height is lower than
noise term describes a random force by quenched disordefat of the randomly selected site. Diffusion of the deposited
An interesting feature of the growing interface is nontrivial particle generates interface tension in the growing interface.
scaling behavior in the global interface width. The globalThe scaling properties obtained from the Family model are in
interface  width, ~defined by W(L,t)=(L"S;[hi(t)  good agreement with those expected from the Edwards-
—h(t)1)Y2 scales as Wilkinson (EW) equation,

dh(x,t)
2 at

té7 i t<L?
LY if t>LZ

W(L,t)~ =vV2h(x,t) + 5(x,1), )

. where 7(x,t) is a white noise with({»(x,t))=0 and
Hereh, L, d, andh;(t) denote the mean height, the system(#(x,t) (x’,t’))=2D 5(x—x")5(t—t"). Growth of the in-
size, the substrate dimension, and the height at tiamel site  terface in the EW equation is determined by the interplay
i, respectivelyZ, z, and 8(={/z) are called the roughness, between the interface tension term and the white noise term.
the dynamic, and the growth exponent, respectively. It is well known that the scaling exponents obtained from the
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Monte Carlo simulation of the models for the FIHM are in + +
excellent agreement with those expected from the continuurr 32

equation describing the motion of the FIHW]. In the
DIRM near the depinning threshold, growth of the driven
interface occurs at the site having the lowest pinning strengtt
among the whole quenched disorder on the interface. There
fore, when one designs the stochastic growth model for the JZ / \
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DIRM near the threshold, the growth rule can be defined as
follows: we preassign random numbers that represeni
guenched disorder in a random medium to all perimeter sites
of the interface. At each time step, we add a particle on the
selected site, which has a global minimum random number_**

on the interface, and then an existing random number on tha |2 %91 049 025 024 0.62
site is updated. After that, the updated particle can diffuse to ofos] o o ox os[ [osfoss
its nearest-neighbor sites. When we used the diffusion rule 044 058

introduced by Family in the model for the DIRM, we ob-
tained the same scaling behavior as that of the QEW equa- FIG. 1. Schematic representations of the stochastic rule of our
tion [17]. Another stochastic growth model for the DIRM model. The arrows indicate the selected sites having he lowest glo-
near the threshold, which has the same relaxation rule as thel minimum random number. The gray squares denote the newly
restricted solid-on-solid(RSOS model for the FIHM added particles on the interface. The bold numbers denote the
[19,20, was introduced by Sneppen. The scaling behaviorgewly updated random numbers.

of the_Sneppen_modeI are the same as thos_e of the contmuun% hi . 1—2h;+h;_;. This relaxation tends to minimize the
equation describing the dynamics of the interface forme

4 . ocal curvature of the interface. Hence we can design a sto-
from the RSOS ”.‘Ode". which has the quenched noise terMBhastic growth model for the DIRM without interface tension
instead of the white noise terf],

near the threshold. The growth rule in our model is as fol-
N lows. (i) We preassign random numbers on the interfécge.
— o v2 2 We add a particle on the site having a global minimum ran-
=vVih b+ Z[Vh(x't)] Tty @ dom numbrér on the interface, and g'][her? we change the ran-
dom number on that sitéiii) The newly added particle dif-
This equation is called the quenched Kardar-Parisi-Zhanfuses randomly to one of the nearest neighbor sites whose
(QKP2) equation. In the QKPZ equation, the term curvature is larger than that of the selected sfte) We
N2[Vh(x,t)]? denotes the lateral growth effect of the grow- update the random number at the newly occupied site. The
ing interface. This fact indicates that any other terms, whickstochastic growth rule of our model is depicted in Fig. 1. In
do not exist in the ontinuum equations describing dynamicghis way, we can generate a movement decreasing curvature
of an interface formed from the model for the FIHM, are notnear the minimum random number site. This is a character-
induced from the diffusion of the newly updated particle inistic feature appearing in the model without interface tension.
the model for the DIRM. It is thus possible to design a sto- We have carried out Monte Carlo simulations for system
chastic growth model for the DIRM near the threshold,sizesL=32, 40, 64, 90, 128, 180, 256, 362, and 512. Nu-
which has the same dynamic rule except for the noise effednerical data are averaged typically over 100 configurations.
as the model for the FIHM, if one knows the stochasticIn order to obtain the growth exponent for our model, we
growth rule of the model for the FIHM. measure the time-dependent behavior of the global interface
We now want to introduce a simple stochastic growthwidth W(L,t) starting from the initially flat interface. We
model for the DIRM with negligible interface tension near plot W?(L,t) vs time in double logarithmic scale in Fig. 2.
the threshold. It is necessary to know the stochastic growtfihe interface width initially grows with the growth expo-
model for the FIHM without interface tension. Several yearsnent, 0.5, as random growth. After that, the interface width
ago, Kim and Sarmf21] introduced a stochastic model, the grows with the exponeng=0.96 as shown in Fig. 2. We
larger curvatur¢L.C) model, which mimics the motion of the also consider another growth exponent by measuring the glo-
FIHM with negligible interface tensiof21]. The exponents bal width starting from the saturated interface instead of the
obtained from the model are in good agreement with thos#at interface. The growth exponent is measured &as
expected from the Herring-MulligHM) equation[22], =0.79. The exponens is smaller tharB obtained from the
flat interface. In the case of stochastic models for the dynam-
ah(x,t) 4 ics of the DIRM, the values 0B are smaller than that ¢8
= KVhx )+ 7(x.0), (5  obtained from the flat interfackl5,17. We also plot the
saturated value ofW?(L) vs the system sizé in double

where —KV*h(x,t) denotes the effect of minimizing of the Iogarithmic scale to obtain the roughness expongnt. The ob-
local curvature of the interface. In the LC model, interfacet@ined roughness exponentis-1.93 as shown in Fig. 3. We
tension and lateral growth effects in a growing interface doave also measured the height-height correlation function
not exist. The relaxation rule in the Kim-Sarma model is asC(x) defined as

follows: the newly added particle can diffuse randomly to 12

one of the nearest-neighk_)or sites whose cur_vgture_is larger C(x):<i, E [h(x+x;,7)—h(x,D]?) , (8

than that of the selected site. The curvature atisgelefined LY X

dh(x,t)
at
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' ' ] describing the motion of the interface formed from our sto-
) chastic growth model. The general Langevin-type equation
§ r & T describing growing interface near the threshold can be writ-
ten as

10

In W*
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| S POY 2 (x,t) KV *h(x,t) + SV 2
, | o yd | e (x,t) (x,t)+ 5 [Vhx,1)]
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A method to check whether or not there exists a surface
0 2 4 6 8 tension effect in our model is to measure the hopping rate of
the newly updated particles according to the slope of a tilted
Int substrate after saturatid’]. When there exists a surface
FIG. 2. Plot ofW2(L,t) vs timet in double logarithmic scale for tension eff_ect in the stochasti_c growth mO(_jeI,_the _neWIy up-
the system siz& =512. The slope of the dotted line igg2=1.92.  dated particles tend to move in the downhill direction of the
Inset: The same plot oV3(L,t) starting from the saturated inter- filted substrate in the relaxation process after update. It is
face. The slope of the line is@=1.58. well known that the diffusion process of a deposited particle
in the LC model is independent on the slope of the tilted
where timer is larger than the saturation time, af{x) substrate. In our model the random number distribution on
scales asctc. The roughness exponent value frabgx) is  the interface is independent on the slope of the tilted sub-
{.~0.98 as shown in the inset of Fig. 3. This value isstrate. Hence, the process of selecting the site having a global
smaller than the one obtained from the global interfaceninimum random number is also independent on the slope of
width. It is known that this anomalous scaling of the localthe tilted substrate. From the above facts we believe that
width is due to the super-roughening, in such a way that théhere is no interface tension effect in our model. Next, we
roughness expone@‘E obtained from the he|ght_he|ght cor- check whether or not there is any lateral grOWth effect in the
relation function is smaller than the one obtained from thedynamics of our model. In the stochastic model with a lateral
saturated value ofv3(L) [12—14. Super-rough scaling oc- growth effect, the number of particles added on the surface
curs when the roughness exponent of the global width is 9enerally increases as the slope of the tilted substrate be-
>1. Super-rough interfaces do not represent the self-affin€omes larger because of the presence\@ Vh(x,t)]%(\
scaling nature, since the basic step is a diverging quantity0). so that the velocity of the driven interface depends on
[14]. The height-height correlation function in the super-the slope of the tilted substra{g]. The velocity of our
rough interfaces might be given &(x)~x%L{ %, If the ~ model is alwaysv = (LL){Syh(x,t+1)—=Sth(x,t)}=1/L
correlation lengthx is the same as the system sizewe regardless of the slope of the substrate tilt. It is because only
recoverC(x=L)=W(L). The value of obtained exponents one particle in our model is added on the interface per each
is larger than that from the QEW and the QKPZ equationstime. The stochastic growth in our model does not include
In Figs. (2) and (3), the data do not show any crossover any surface tension and lateral growth effects. Accordingly
behavior. Therefore our model belongs to a different univerwe propose that the continuum equation corresponding to the
sality class from the QEW and the QKPZ universality dynamics of our model is the quenched Herring-Mullin
classes. (QHM) equation[23],

It would be interesting to consider the continuum equation
ah(x,t
9 . : (ﬁt L KVh(x0+ n0xh). ®)

13 g
| Lou / ] Besides the term- KV*h in the QHM equation, there is the
= K possibility of the existence of other terms or higher order
’ nonlinear terms in dynamics of our model. It is impossible to
check whether those effects exist or not through the simula-
& tion of the model. However, we think that no effects of those
r other terms exist due to the quenched noise because we
3o £ 1 could not find any crossover behavior in our model.
i - In summary, we have introduced a simple self-organized
stochastic growth model for the driven interface in a random
0 1 2 3 medium near the depinning threshold. The obtained rough-
ness and growth exponents dre1.938=0.96 in 1+ 1 di-
InL mensions. These are alternate exponents. Our model is de-
FIG. 3. Plot of W2(L,t) vs the system sizk in double logarith- ~ Signed to mimic the motion of the driven tensionless
mic scales for the system sizes=32, 40, 64, 90, 128, 180, 256, interface in a random medium near the threshold. In the
362, and 512. The slope of the line i§=23.85. Inset: Plot 0€2(x) model, we have used the relaxation rule introduced by Kim
vs x in double logarithmic scales for the system size 512. The and Sarmd21]. The relaxation rule generates the effect of
line obtained from the least-square fits has the slofje=2.96. minimizing of the local curvature of the driven interface. We

InW?*
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have thus proposed that a suitable continuum equation for This work was supported in part by the Korean Science
dynamics of the model is the QHM equation, by showingand Engineering FoundatiofGrant No. 98-0702-05-01}3
that the interface tension and the lateral growth effects do nand also in part by a research grant from Korea University
exist in the driven interface formed by the model. (1999.
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